3.4 Mechanical Vibrations

Mass-spring-dashpot system

- Restorative force $F_{S}=-k x$, where $k>0$ is spring constant (Hooke's law).
- The dashpot provides force $F_{R}=-c v=-c \frac{d x}{d t}$, where $c>0$ is damping constant.
- External force $F_{E}=F(t)$.
- The total force acting of the mass is $F=F_{S}+F_{R}+F_{E}$.
- Using Newton's law,

$$
F=m a=m \frac{d^{2} x}{d t^{2}}=m x^{\prime \prime}
$$

we have the following second-order linear differential equation

$$
m x^{\prime \prime}+c x^{\prime}+k x=F(t)
$$

- If $c=0$, we call the motion undamped. If $c>0$, we call the motion damped.
- If $F(t)=0$, we call the motion free. If $F(t) \neq 0$, we call the motion forced.

An important note before we start analyzing the general cases:
Rather than memorizing the various formulas given in the discussion below, it is better to practice a particular case to set up the differential equation and then solve it directly.

1. Free Undamped Motion ($c=0$ and $F(t)=0$)

Our general differential equation takes the simpler form

$$
m x^{\prime \prime}+k x=0 \Rightarrow x^{\prime \prime}+\left(\sqrt{\frac{k}{m}}\right)^{2} x=0
$$

- It is convenient to define

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

- Then we can rewrite our equation in the form

$$
x^{\prime \prime}+\omega_{0}^{2} x=0
$$

- Then the characteristic equation is

$$
r^{2}+w_{0}^{2}=0 \Rightarrow r^{2}=-w_{0}^{2} \Rightarrow r= \pm \omega_{0} i \text { (complex conjugate) }
$$

- The general solution of this equation is

$$
x(t)=A \cos \omega_{0} t+B \sin \omega_{0} t
$$

We write $x(t)=C\left(\frac{A}{C} \cos \omega_{0} t+\frac{B}{C} \sin \omega_{0} t\right)$

$$
=C\left(\cos \alpha \cos \omega_{0} t+\sin \alpha \sin \omega_{0} t\right)
$$

$$
\tan \alpha=\frac{B}{A}
$$

- Question 1. What is the values of C ?

$$
C=\sqrt{A^{2}+B^{2}}
$$

- Question 2: What is the angle α ?

Recall $\cos (a-b)=\cos a \cos b+\sin a \sin b$
Then $x(t)=C \cos \left(\omega_{0} t-\alpha\right)$

- Although $\tan \alpha=\frac{B}{A}$, the angle α is not given by the principal branch of the inverse tangent function, which gives value only in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- Instead. α is the angle between O and 2π such that $\sin \alpha=\frac{B}{C}, \cos \alpha=\frac{A}{C}$, where either A or B or both
may

$$
\alpha= \begin{cases}\tan ^{-1}(B / A) & \text { if } A>0, B>0(\text { first quadrant) } \tag{1}\\ \pi+\tan ^{-1}(B / A) & \text { if } A<0(\text { second or third quadrant }) \\ 2 \pi+\tan ^{-1}(B / A) & \text { if } A>0, B<0 \text { (fourth quadrant) }\end{cases}
$$

where $\tan ^{-1}\left(\frac{b}{a}\right)$ is the angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ given by a calculator or computer.

where ω, C and α are obtained as above.

- We call such motion simple harmonic motion. A typical graph of such motion is as

- To summarize , it has

Name	Symbol	Quick note
Amplitude	C	$C=\sqrt{A^{2}+B^{2}}$, where $x(t)=A \cos \omega_{0} t+B \sin \omega_{0} t$ is the solution for the equation $x^{\prime \prime}+\omega_{0}^{2} x=0$.
Circular frequency	ω_{0}	$\omega_{0}=\sqrt{\frac{k}{m}}$
Phase angle	α	Obtained by formula (1) above
Period	$T=\frac{2 \pi}{\omega_{0}}$	Time required for the system to complete one full oscillation
Frequency	$\nu=\frac{1}{T}=\frac{\omega_{0}}{2 \pi}$ (In Hz)	It measures the number of complete cycles per second.

$$
\stackrel{?}{\underline{p}} x^{\prime \prime}+c x^{\prime}+\underline{k}^{0}{ }^{?} x=E(t) 0
$$

- A body with mass $m=0.5$ kilogram (kg) is attached to the end of a spring that is stretched 2 meters (m) by a force of 100 newtons (N).
- It is set in motion with initial position $x_{0}=1(\mathrm{~m})$ and initial velocity $v=-5(\mathrm{~m} / \mathrm{s})$. (Note that these initial conditions indicate that the body is displaced to the right and is moving to the left at time $t=0$.)
- Find the position function of the body in the form $C \cos \left(\omega_{0} t-\alpha\right)$ as well as the amplitude, frequency and period of its motion.
ANS: Since $F_{s}=100=k .2 \Rightarrow k=50 \mathrm{~N} / \mathrm{m}$
Then we have

$$
\begin{aligned}
0.5 x^{\prime \prime}+50 x & =0 \\
\Rightarrow \quad x^{\prime \prime}+100 x & =0 \quad\left(x^{\prime \prime}+w_{0}^{2} x=0\right)
\end{aligned}
$$

From our previous discussion, we have

$$
\omega_{0}^{2}=100 \Rightarrow \omega_{0}=10 \mathrm{rad} / \mathrm{s} .
$$

Thus it will osillate with period $T=\frac{2 \pi}{w_{0}}=\frac{\pi}{5}$.
with frequency $V=\frac{1}{T}=\frac{5}{\pi} \approx 1.5915 \mathrm{~Hz}$.
The char. eq $r^{2}+100=0 \Rightarrow r= \pm 10 i$.
Thus we have $x(t)=A \cos 10 t+B \sin 10 t$. Where A and B are constants.
As $x(0)=1, \quad A=1$. $x^{\prime}(t)=-10 A \sin 10 t+10 B \cos 10 z$
$x^{\prime}(0)=10 B=-5, \quad \Rightarrow \quad B=-\frac{1}{2}$.
Then

$$
x(t)=\cos 10 t-\frac{1}{2} \sin 10 t
$$

The amplitude of the motion is $C=\sqrt{A^{2}+B^{2}}=\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2} \mathrm{~m}$.

$$
x(t)=\frac{1}{2} \sqrt{5}\left(\frac{2^{6}}{\sqrt{5}} \cos \alpha x-\frac{1}{\sqrt{5}} \sin \alpha\right.
$$

By the graph, we have

$$
\begin{aligned}
\alpha & =2 \pi-\beta^{b^{2}}=2 \pi-\tan ^{-1} \frac{\frac{1}{2}}{1}=2 \pi-\tan ^{-1} \frac{1}{2} \\
& \approx 5.8195 \cdot \mathrm{rad} .
\end{aligned}
$$

$$
\alpha= \begin{cases}\tan ^{-1}(B / A) & \text { if } A>0, B>0(\text { first quadrant }) \\ \pi+\tan ^{-1}(B / A) & \text { if } A<0(\text { second or third quadrant }) \\ \underline{2 \pi+\tan ^{-1}(B / A)} & \text { if } A>0, B<0 \underline{(\text { fourth quadrant })}\end{cases}
$$

We can also use formula 1, with $A=1>0, B=-\frac{1}{2}<0$

$$
\begin{aligned}
\alpha & =2 \pi+\tan ^{-1} \frac{B}{A} \\
& =2 \pi+\tan ^{-1} \frac{-\frac{1}{2}}{1} \\
& =2 \pi+\tan ^{-1}\left(-\frac{1}{2}\right) \\
& \approx 5.8195 \mathrm{rad}
\end{aligned}
$$

Thus $\quad x(t)=\frac{\sqrt{5}}{2} \cos (10 t-5.8195)$
2. Free Damped Motion ($c>0$ and $F(t)=0$)

In this case, we consider

$$
m x^{\prime \prime}+c x^{\prime}+k x=0
$$

Let $\omega_{0}=\sqrt{k / m}$ and $p=\frac{c}{2 m}>0$. We have

$$
x^{\prime \prime}+2 p x^{\prime}+\omega_{0}^{2} x=0
$$

The characteristic equation

$$
r^{2}+2 p r+\omega_{0}^{2}=0
$$

has roots

$$
\begin{equation*}
r_{1}, r_{2}=-p \pm \sqrt{p^{2}-\omega_{0}^{2}} \tag{2}
\end{equation*}
$$

Note

$$
p^{2}-\omega_{0}^{2}=\frac{c^{2}-4 k m}{4 m^{2}}
$$

We have the following three cases.

Case 1. Overdamped ($c^{2}>4 k m$, two distinct real roots)

Figure

FIGURE 3.4.7. Overdamped motion: $x(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ with $r_{1}<0$ and $r_{2}<0$. Solution curves are graphed with the same initial position x_{0} and different initial velocities.

Analysis

Eq(3) gives two distinct real roots r_{1} and $r_{2}($ both $<0)$. The position function

$$
x(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Note

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

(The object will go to the equilibrum position without any ocillations.)

Case 2. Critically damped ($c^{2}=4 k m$, repeated real roots)

Figure

FIGURE 3.4.8. Critically damped motion: $x(t)=\left(c_{1}+c_{2} t\right) e^{-p t}$ with $p>0$. Solution curves are graphed with the same initial position x_{0} and different initial velocities.

Analysis

Eq(3) has roots $r_{1}=r_{2}=-p$. The general solution for the position function.

$$
x(t)=e^{-p t}\left(c_{1}+c_{2} t\right)
$$

and

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

The resistance of the dashpot is just enough to damp out any oscillations.

Case 3. Underdamped ($c^{2}<4 k m$, two complex roots)

Figure

Analysis

$\mathrm{Eq}(3)$ has roots $r_{1,2}=-p \pm i \sqrt{\omega_{0}^{2}-p^{2}}=-p \pm \omega_{1} t$, where $w_{1}=\sqrt{\omega_{0}^{2}-p^{2}}$

The general solution for the position function $x(t)=e^{-p t}\left(A \cos w_{1} t+B \sin \omega_{1} t\right)$

$$
C=\sqrt{A^{2}+B^{2}}
$$

$$
x(t)=e^{-P t} C\left(\frac{A}{C} \cos \omega_{1} t+\frac{B}{C} \sin w_{1} t\right)
$$

$$
=C e^{-p t}\left(\cos \alpha \cos \omega_{1} t+\sin \alpha \sin \omega_{1} t\right)
$$

$$
\Rightarrow x(t)=\left(e^{-p t} \cos \left(w_{1} t-\alpha\right)\right.
$$

Example 2 Suppose that the mass in a mass-spring-dashpot system with $m=6, c=7$, and $k=2$ is set in motion with $x(0)=0$ and $x(0)^{\prime}=2$.
(a) Find the position function $x(t)$.
(b) Find how far the mass moves to the right before starting back toward the origin.

Ans: We have $\quad 6 x^{\prime \prime}+7 x^{\prime}+2 x=0, \quad x(0)=0, x^{\prime}(0)=2$.
The char. eq $6 r^{2}+7 r+2=0$.

$$
\Rightarrow r_{1,2}=\frac{-7 \pm \sqrt{49-48}}{12}=\frac{-7 \pm 1}{12}=-\frac{2}{3},-\frac{1}{2}
$$

Thus

$$
x(t)=c_{1} e^{-\frac{2}{3} t}+c_{2} e^{-\frac{1}{2} t}
$$

$$
x(0)=0, \quad c_{1}+c_{2}=0
$$

Since $x^{\prime}(0)=2 . \quad x^{\prime}(t)=-\frac{2}{3} c_{1} e^{-\frac{2}{8} t}-\frac{1}{2} c_{2} e^{-\frac{1}{2} t}$

$$
x^{\prime}(0)=-\frac{2}{3} C_{1}-\frac{1}{2} C_{2}=2
$$

$$
\Rightarrow\left\{\begin{array}{l}
c_{1}=-12 \\
c_{2}=12 .
\end{array} \text { Thus } x(t)=-12 e^{-\frac{2}{3} t}+12 e^{-\frac{1}{2} t}\right.
$$

 back when $x^{\prime}(t)=0$.
Let $x^{\prime}(t)=8 e^{-\frac{2}{3} t}-6 e^{-\frac{t}{2}}=0$

$$
\Rightarrow t=6 \ln \frac{4}{3} \approx 1.72609 \mathrm{~s} .
$$

Thus we have

$$
x\left(6 \ln \frac{4}{3}\right)=\frac{81}{64} \approx 1.26563 \mathrm{~m}
$$

Example 3 In the following problems (a) and (b), a mass m is attached to both a spring (with given spring constant k) and a dash- pot (with given damping constant c). The mass is set in motion with initial position x_{0} and initial velocity v_{0}.
(1) Find the position function $x(t)$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdamped, write the position function in the form $x(t)=C_{1} e^{-p t} \cos \left(\omega_{1} t-\alpha_{1}\right)$.
(2) Find the undamped position function $u(t)=C_{0} \cos \left(\omega_{0} t-\alpha_{0}\right)$ that would result if the mass on the spring were set in motion with the same initial position and velocity, but with the dashpot disconnected (so $c=0$).
(3) Construct a figure that illustrates the effect of damping by comparing the graphs of $x(t)$ and $u(t)$.
(a) $m=1, c=4, k=3 ; x_{0}=2, v_{0}=0$

ANS:
(1) With damping.

$$
\begin{gathered}
\quad x^{\prime \prime}+4 x^{\prime}+3 x=0, x(0)=2, x^{\prime}(0)=0 . \\
\Rightarrow r^{2}+4 r+3=(r+1)(r+3)=0 \\
\Rightarrow r_{1}=-1, \quad r_{2}=-3 . \\
\text { Thus } x(t)=c_{1} e^{-t}+c_{2} e^{-3 t} \\
\text { As } x(0)=2, \frac{c_{1}+c_{2}=2}{x^{\prime}(t)=-c_{1} e^{-t}-3 c_{2} e^{-3 t}} \\
\text { As } x^{\prime}(0)=0, \quad \begin{array}{ll}
x^{\prime}(0)=-c_{1}-3 c_{2}=0 \\
\Rightarrow & \left\{\begin{array}{ll}
c_{1}+c_{2}=2 \\
-c_{1}-3 c_{2}=0
\end{array} \quad\right. \text { inc } \\
c_{2}=-1 & \text { two }
\end{array}
\end{gathered}
$$

$$
\text { Thus } x(t)=3 e^{-t}-e^{-3 t} \text {, which describes overodumped }
$$

(1) Without damping $\quad(c=0)$

We have $x^{\prime \prime}+3 x=0$.
The char. eq is $r^{2}+3=0 \Rightarrow r= \pm \sqrt{3} i$.
Thus $x(t)=A \cos \sqrt{3} t+B \sin \sqrt{3} t$.

$$
\begin{aligned}
& x^{\prime}(t)=-\sqrt{3} A \sin \sqrt{3} t+\sqrt{3} B \cos \sqrt{3} t . \\
& x(0)=2, \quad A=2 \\
& x^{\prime}(0)=0, \quad \sqrt{3} B=0, \quad \Rightarrow B=0
\end{aligned}
$$

Thus $x(t)=2 \cos \sqrt{3} t \rightarrow$ Note this solution is already in the form $C_{0} \cos \left(\omega_{0} t-\alpha_{0}\right)$

(b) $m=1, c=2, k=10 ; x_{0}=2, v_{0}=4$

Ans: (1) With damping $\quad C=2$.
We have

$$
x^{\prime \prime}+2 x^{\prime}+10 x=0, \quad x(0)=2, x^{\prime}(0)=4 .
$$

The char. eq n is

$$
\begin{gathered}
r^{2}+2 r+10=0 \\
\Rightarrow \quad r_{1,2}=\frac{-2 \pm \sqrt{4-40}}{2}=-1 \pm 3 i .
\end{gathered}
$$

Thus $x(t)=e^{-t}(A \cos 3 t+B \sin 3 t)$
As $x(0)=2, \quad A=2$.

$$
x^{\prime}(t)=-e^{-t}(A \cos 3 t+B \sin 3 t)+e^{-t}(-3 A \sin 3 t+3 B \cos 3 t)
$$

As $x^{\prime}(0)=4, \quad-A+3 B=4 \Rightarrow B=2$
So $x(t)=e^{-t}\left(2^{t^{A}} \cos 3 t+2^{t^{B}} \sin 3 t\right)$ underdamped since the char. eqn has complex conjugates solutions.

$$
\xrightarrow{B+\rightarrow} \begin{aligned}
c & =\sqrt{A^{2}+B^{2}} \\
& =\sqrt{2^{2}+2^{2}} \\
A & =2 \sqrt{2} \\
\tan \alpha & =\frac{2}{2}=1
\end{aligned} \quad x(t)=2 \sqrt{2} e^{-t} \cos \left(3 t-\frac{\pi}{4}\right)
$$

Notice α is in the $1_{s t}$ quadrat., $\alpha=\frac{\pi}{4}$
(2) Without damping $(c=0)$

We have

$$
\begin{aligned}
& x^{\prime \prime}+10 x=0, \quad x(0)=2, \quad x^{\prime}(0)=4 . \\
\Rightarrow & r^{2}+10=0 \Rightarrow r= \pm \sqrt{10} i .
\end{aligned}
$$

Then $x(t)=A \cos \sqrt{10} t+B \sin \sqrt{10} t$.
As $x(0)=2, \quad A=2$
As $\quad x^{\prime}(0)=4, \quad x^{\prime}(t)=-\sqrt{10} A \sin \sqrt{10} t+\sqrt{10} B \cos \sqrt{10} t$

$$
c=\sqrt{2^{2}+\left(\frac{4}{\sqrt{10}}\right)^{2}}
$$

Thus $\sqrt{10} B=4 \Rightarrow B=\frac{4}{\sqrt{10}}$
So $x(t)=\underset{A}{\uparrow} 2 \cos \sqrt{10} t+\frac{4}{\sqrt{10}} \sin \sqrt{10} t$
Thus

$$
x(t)=2 \sqrt{\frac{7}{5}} \cos (\sqrt{10} t-0.569)
$$

